Определение коэффициента корреляции

Что такое коэффициент корреляции?

Коэффициент корреляции — это статистическая мера силы взаимосвязи между относительными движениями двух переменных. Диапазон значений от -1,0 до 1,0. Расчетное число больше 1,0 или меньше -1,0 означает, что при измерении корреляции произошла ошибка. Корреляция -1,0 показывает идеальную отрицательную корреляцию, а корреляция 1,0 показывает идеальную положительную корреляцию. Корреляция 0,0 показывает отсутствие линейной зависимости между движением двух переменных.

Статистику корреляции можно использовать в финансах и инвестировании. Например, коэффициент корреляции может быть рассчитан для определения уровня корреляции между ценой на сырую нефть и ценой акций нефтедобывающей компании, такой как Exxon Mobil Corporation. Поскольку нефтяные компании получают большую прибыль по мере роста цен на нефть, корреляция между двумя переменными очень положительная.

Понимание коэффициента корреляции

Есть несколько типов коэффициентов корреляции, но наиболее распространенным является корреляция Пирсона (р). Это измеряет силу и направление линейной зависимости между двумя переменными. Он не может фиксировать нелинейные отношения между двумя переменными и не может различать зависимые и независимые переменные.

Значение ровно 1,0 означает, что между двумя переменными существует идеальная положительная связь. При положительном увеличении одной переменной существует также положительное увеличение второй переменной. Значение -1,0 означает, что между двумя переменными существует идеальная отрицательная связь. Это показывает, что переменные движутся в противоположных направлениях — при положительном увеличении одной переменной происходит уменьшение второй переменной. Если корреляция между двумя переменными равна 0, между ними нет линейной зависимости.

Степень взаимосвязи варьируется по степени в зависимости от значения коэффициента корреляции. Например, значение 0,2 показывает, что между двумя переменными существует положительная корреляция, но она слабая и, вероятно, не важна. Аналитики в некоторых областях исследований не считают корреляции важными до тех пор, пока значение не превысит минимум 0,8. Однако коэффициент корреляции с абсолютным значением 0,9 или выше будет представлять очень сильную взаимосвязь.

Инвесторы могут использовать изменения в статистике корреляции для выявления новых тенденций на финансовых рынках, в экономике и ценах на акции.

Ключевые выводы

  • Коэффициенты корреляции используются для измерения силы взаимосвязи между двумя переменными.
  • Корреляция Пирсона — одна из наиболее часто используемых в статистике. Это измеряет силу и направление линейной зависимости между двумя переменными.
  • Значения всегда находятся в диапазоне от -1 (сильная отрицательная связь) до +1 (сильная положительная связь). Значения, равные нулю или близкие к нему, означают слабую линейную зависимость или ее отсутствие.
  • Значения коэффициента корреляции меньше +0,8 или больше -0,8 не считаются значимыми.

Статистика корреляции и инвестирование

Корреляция между двумя переменными особенно полезна при инвестировании на финансовых рынках. Например, корреляция может быть полезна при определении того, насколько хорошо взаимный фонд работает по сравнению с его эталонным индексом или другим фондом или классом активов. Добавляя паевой инвестиционный фонд с низкой или отрицательной корреляцией к существующему портфелю, инвестор получает выгоду от диверсификации.

Другими словами, инвесторы могут использовать отрицательно коррелированные активы или ценные бумаги для хеджирования своих портфелей и снижения рыночного риска из-за волатильности или резких колебаний цен. Многие инвесторы хеджируют ценовой риск портфеля, что эффективно снижает любой прирост капитала или убытки, потому что они хотят дивидендного дохода или доходности от акций или ценных бумаг.

Статистика корреляции также позволяет инвесторам определять, когда изменяется корреляция между двумя переменными. Например, акции банка обычно имеют очень положительную корреляцию с процентными ставками, поскольку ставки по кредитам часто рассчитываются на основе рыночных процентных ставок. Если цена акций банка падает, а процентные ставки растут, инвесторы могут понять, что что-то не так. Если цены на акции аналогичных банков в секторе также растут, инвесторы могут сделать вывод, что падение акций банков не связано с процентными ставками. Вместо этого плохо работающий банк, вероятно, имеет дело с внутренней фундаментальной проблемой.

Уравнение коэффициента корреляции

Чтобы вычислить корреляцию момента произведения Пирсона, необходимо сначала определить ковариацию двух рассматриваемых переменных. Затем необходимо вычислить стандартное отклонение каждой переменной. Коэффициент корреляции определяется делением ковариации на произведение стандартных отклонений двух переменных.

ρ xy = Cov (x, y) σ x σ y где: ρ xy = коэффициент корреляции момента произведения Пирсона Cov (x, y) = ковариация переменных x и y σ x = стандартное отклонение x σ y = стандартное отклонение of y begin {align} & rho_ {xy} = frac { text {Cov} (x, y)} { sigma_x sigma_y} \ & textbf {где:} \ & rho_ {xy } = text {Коэффициент корреляции произведение-момент Пирсона} \ & text {Cov} (x, y) = text {ковариация переменных} x text {и} y \ & sigma_x = text {стандартный отклонение} x \ & sigma_y = text {стандартное отклонение} y \ end {выровнено} ρxy = σx σy Cov (x, y) где: ρxy = произведение-момент корреляции Пирсона коэффициент Cov (x, y) = ковариация переменных x и yσx = стандартное отклонение xσy = стандартное отклонение y

Стандартное отклонение — это мера разброса данных от среднего значения. Ковариация — это мера того, как две переменные изменяются вместе, но ее величина не ограничена, поэтому ее трудно интерпретировать. Разделив ковариацию на произведение двух стандартных отклонений, можно вычислить нормализованную версию статистики. Это коэффициент корреляции.

Часто задаваемые вопросы

Что подразумевается под коэффициентом корреляции?

Коэффициент корреляции описывает, как одна переменная движется по отношению к другой. Положительная корреляция указывает на то, что оба движутся в одном направлении с корреляцией +1,0, когда они движутся в тандеме. Отрицательный коэффициент корреляции говорит о том, что они движутся в противоположных направлениях. Корреляция, равная нулю, предполагает отсутствие корреляции вообще.

Как рассчитать коэффициент корреляции?

Коэффициент корреляции рассчитывается путем сначала определения ковариации переменных, а затем деления этой величины на произведение стандартных отклонений этих переменных.

Как используется коэффициент корреляции при инвестировании?

Коэффициенты корреляции — широко используемый статистический показатель в инвестировании. Они играют очень важную роль в таких областях, как состав портфеля, количественная торговля и оценка эффективности. Например, некоторые управляющие портфелями будут отслеживать коэффициенты корреляции отдельных активов в своих портфелях, чтобы гарантировать, что общая волатильность их портфелей поддерживается в допустимых пределах.

Аналогичным образом аналитики иногда используют коэффициенты корреляции, чтобы предсказать, как на конкретный актив повлияет изменение внешнего фактора, такого как цена товара или процентная ставка.

Поделитесь с друзьями

Address
304 North Cardinal St.
Dorchester Center, MA 02124

Work Hours
Monday to Friday: 7AM - 7PM
Weekend: 10AM - 5PM